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1. INTRODUCTION

In 1934 J. L. Walsh noted in [4] that the Taylor polynomial L~~o akf of
an analytic functionfcould be obtained by taking the limit as E 10 of the best
(Chebyshev) nth degree polynomial approximant of degree ~ N to f in
the disk [ z I ~ E. Later he generalized this result to Pade approximants of
analytic functions [5]; finally in [6] he proved the following

THEOREM. Let f(x) = ao + a1x + ... + am+nxni-t-n + O(xm+n+1), in ~ 0,
n ~ 0, be of class C"'-t-n+l[O, 0] for some I) > O. Let R. = p.!Q. denote a
rational function of type (11'1, 11) which best approximates f in the Cheb.vshev
sense on [0, E]. Suppose further that the determinant

am- n +1

am - n+2 oF 0, and (*)

Here Gj = °ifj < O. Then as E! 0, R€ approaches the [min] Pade approximant
P.m,,, off on any closed set where Rm,n is analytic.

In this paper we show that the Pade approximant to any function
f E cm+n+l[O, 8] is obtained by taking the best rational approximant on the
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interval [0, E), and then letting Eto. Our main contribution is an approixi­
mation theoretic proof of this fact without assuming (*).

We require that the functions with which we deal be real-valued since the
proofs rely on real variable techniques. When referring to the degree of a
polynomial P(deg P) we will mean its exact degree (the polynomial °has
degree -1). If P and Q are polynomials, PIQ is defined continuously at the
removable singular points.

2. MAIN RESULT

LetfE cm+n+1[O, 0) (m ;;::: 0, n ;;::: 0) for some 0, °< 0 ~ 1. We set

f(x) = Tm+n(x) + rm+n(x)

= ao + a1x + ... + am+nxm+n + rm+n(x), (1)

where aj = f(i)(O)fj!, j = 0,... , m + n. The [min) Pade approximant of f
is the unique rational function R m.n of the form PmlQn, where Pm and Qn
are polynomials of degree no greater than m and n, respectively, such that
f(x) Qn(x) - Pm/x) = O(xm+n+1) as x t 0. For the uniqueness of Rm.n and
other details, cf. [3]. From this definition, the following lemma follows
immediately.

LEMMA 1. Let Pm and Qn be polynomials of degree no greater than m
and n, respectively, Qn -:- 0. Then R m.n = PmlQn is the [min] Pade approxi­
mant off if and only if Pm and Qn satisfy the following equations:

j = O, ...,m +n. (2)

We call (2) the Pade equations. Let f!Jl = f!Jlm •n be the collection of all
rational functions PIQ where P and Q are polynomials of degree no greater
than In and n, respectively. For °< E ~ 0, let R. E f!Jl satisfy

Ilf - R.I/ro.•] = mi!?-Ilf - g !lro.•] ,
gEm

(3)

where 1/ l/ro.•J is the supremum norm over the interval [0, E]. We will establish
the following theorem using the elements of the theory of best approximation.

THEOREM 1. Let R m.n be the [min) Pade approximant off For each E,

o < E ~ 0, let R. E PIt satisfy (3). Then there is a real neighborhood Q of°
such that R. --- Rm.n uniformly on Q, as E t 0.

To prove this theorem, we need the following standard results in approxi­
mation theory. See, for instance, Cheney [1, p. 163], and Lorentz [2, p. 40].
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LEMMA 2. In order that an irreducible rational function R. = p.IQ, be
the best approximation to f from &£ on [0, E], it is necessary and sufficient
that the error f - R. will have at least 2 + max{111 -+ deg Q., n + degP.}
alternations.

LEMMA 3, (Markov), Let PN be a polynomial of degree no greater than
N(?;:;O) such that IPN(x)1 ~ M for all x on [0, E], E > O. Then IPN'(X) I ~
2N2MfEfor all x on [0, E]

We now begin to prove Theorem 1. Write R, in an irreducible form
R. = p.IQ., where p.(x) = z:.;:o b.,ixi, Q.(x) = L~'~o C.,lXi , and L~o IC.,i 1= L
Let VeE) = max{m + deg Q., n + deg p.}. By Lemma 2, f - R. has at least
VeE) + 1 (distinct) zeros in (0, E). Let F.(x) = p.(x) X",+11-V(.), and Qix) =
Qix) xm-Ln-v(E). Then counting multiplicities,/Q. - F. has at least m --r 11 -L 1
zeros in [0, E]. By Rolle's Theorem we have

j == 0, ... , m -t- 11,

where g.,o ,... , g"m+n lie in [0, E]. Furthermore, it is easy to see that deg F. ~ in

and deg Q. ~ n. By the normalization of Q., we have I c.,J [ ~ 1, so that
there is a sequence Ek t 0 such that for all k, m + 11 - v(EJ = I, a nonnegative
integer, and c.k,J converges to some CJ for j = 0, ... , n. (Observe that Elo can
be chosen as a subsequence of any given sequence of positive numbers
converging to 0.) Define Q(x) = z:.;=o CjXJ, and Q(x) = x1Q(x). Clearly,
deg Q~ n, and it is obvious that L I CJ I = 1 so that Q' O. Hence,

• '" <- 0 C • - 0 -L b' (~O- '(j)(") {fO-)(1)(O\
smc~ ';;'k,f -+ lOr] - ,... , In I II'... we ,ave .l..-:~<.J '?;"k.i -+ U~, h

o ~ j ~ in -+ n. But since deg p. ~ 111, (fQ.)<J)(t.,J.] = 0 whenever
In < j ~ m + 11, from (4). Hence, we have

(fQ)(j)(O) = 0, j = m + 1,.... In -/- n. (5)

These are "half" of the Pade equations (2). To obtain the other "half",
note that

Ilf - R. [Iro.•] = [If - P.IQ" liro.E] ~ :If - T", i]ro,d ,

where Trix) = ao -+ ... + arnx"'. Hence, it follows that

:[ TmC). - F. Ilro,.] ~ IlfQ. - P.llro,.] + li(f - Tm ) (J, nro,.]
~ [I! - R. l[ro .•]11 g, !iro.•] + If - Tn: Ilro,elil Q. [[rO,EJ
~ 21[ Q. !lro,.Jllf - Trn [lro.E] ~ 2 !if - T", !iro..] .

By the definition of Tm , it is clear that Ilf - T", ilro,E] = O(Em,l). Thus, by
Lemma 3, we have

. - {\J -v,... ,m. (IS)
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In particular, for j = 0,..., m,

II p~) !lro,.] ~ II(TmQ.)(j) Ilro,.] + O(Em- Hl)

~ II(T",Q.)(j) Ilro,l] + O(Em-j+l) = 0(1). (7)

In (7), if we put j = m, j = m ~ 1,... , and j = 0, consecutively, we see that
the sequences {b•.,j}, j = 0,..., m, are bounded and hence have convergent
subsequences {b'k':j}. Let bj = lim b'k',J, P(x) = :L;:o bjxj, and P(x) = XZP(x).
Clearly, deg P :::;; m. From (4) we conclude that

(fQ - P)(j)(O) = 0, j = O, ... ,m. (8)

These are the other "half" of the Pade equations (2). Combining (5) and (8),
we have

(ft) - P)(j)(O) = 0, j = 0,..., m + n.

By Lemma 1 we know that Rm,n = PIQ is the [min] Pade approximant off
It follows from the uniqueness property of the Pade approximant that as
k ~ 00, R'

k
~ Rm.n , coefficientwise. Hence, R.~ Rm,n coefficientwise, as

E! O. Taking Q to be any open interval ( -TJ, TJ) for which [-TJ, TJ] contains
no pole of Rm,n, it follows that R. ~ Rm,n uniformly on Q, as E! O.
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