Padé Approximants as Limits of Best Rational Approximants

CHARLES K. CHUI

Department of Mathematics, Texas A & M University, College Station, Texas 77843

OVED SHISHA*

Mathematics Research Center, Code 7840, Naval Research Laboratory, Washington, D.C. 20375

AND

PHILIP W. SMITH

Department of Mathematics, Texas A & M University, College Station, Texas 77843

1. INTRODUCTION

In 1934 J. L. Walsh noted in [4] that the Taylor polynomial $\sum_{k=0}^{n} a_k z^k$ of an analytic function f could be obtained by taking the limit as $\epsilon \downarrow 0$ of the best (Chebyshev) *n*th degree polynomial approximant of degree $\ge N$ to f in the disk $|z| \le \epsilon$. Later he generalized this result to Padé approximants of analytic functions [5]; finally in [6] he proved the following

THEOREM. Let $f(x) \equiv a_0 + a_1x + \cdots + a_{m+n}x^{m+n} + 0(x^{m+n+1}), m \ge 0,$ $n \ge 0$, be of class $C^{m+n+1}[0, \delta]$ for some $\delta > 0$. Let $R_{\epsilon} = P_{\epsilon}/Q_{\epsilon}$ denote a rational function of type (m, n) which best approximates f in the Chebyshev sense on $[0, \epsilon]$. Suppose further that the determinant

 $\begin{vmatrix} a_m & a_{m-1} & \cdots & a_{m-n+1} \\ a_{m+1} & a_m & \cdots & a_{m-n+2} \\ & \ddots & \ddots & \\ a_{m+n-1} & a_{m+n-2} & \cdots & a_m \end{vmatrix} \neq 0, \quad \text{and} \quad a_0 \neq 0.$ (*)

Here $a_j = 0$ if j < 0. Then as $\epsilon \downarrow 0$, R_{ϵ} approaches the [m/n] Padé approximant $R_{m,n}$ of f on any closed set where $R_{m,n}$ is analytic.

In this paper we show that the Padé approximant to any function $f \in C^{m+n+1}[0, \delta]$ is obtained by taking the best rational approximant on the

* Present address: Department of Mathematics, University of Rhode Island, Kingston. RI 02881. interval $[0, \epsilon]$, and then letting $\epsilon \downarrow 0$. Our main contribution is an approiximation theoretic proof of this fact without assuming (*).

We require that the functions with which we deal be real-valued since the proofs rely on real variable techniques. When referring to the degree of a polynomial $P(\deg P)$ we will mean its exact degree (the polynomial 0 has degree -1). If P and Q are polynomials, P/Q is defined continuously at the removable singular points.

2. MAIN RESULT

Let $f \in C^{m+n+1}[0, \delta]$ $(m \ge 0, n \ge 0)$ for some $\delta, 0 < \delta \le 1$. We set

$$f(x) = T_{m+n}(x) + r_{m+n}(x)$$

= $a_0 + a_1 x + \dots + a_{m+n} x^{m+n} + r_{m+n}(x),$ (1)

where $a_j = f^{(j)}(0)/j!$, j = 0,..., m + n. The [m/n] Padé approximant of f is the unique rational function $R_{m,n}$ of the form P_m/Q_n , where P_m and Q_n are polynomials of degree no greater than m and n, respectively, such that $f(x) Q_n(x) - P_m(x) = 0(x^{m+n+1})$ as $x \downarrow 0$. For the uniqueness of $R_{m,n}$ and other details, cf. [3]. From this definition, the following lemma follows immediately.

LEMMA 1. Let P_m and Q_n be polynomials of degree no greater than m and n, respectively, $Q_n \neq 0$. Then $R_{m,n} = P_m |Q_n|$ is the [m/n] Padé approximant of f if and only if P_m and Q_n satisfy the following equations:

$$(fQ_n - P_m)^{(j)}(0) = 0, \quad j = 0, ..., m + n.$$
 (2)

We call (2) the Padé equations. Let $\mathscr{R} \equiv \mathscr{R}_{m,n}$ be the collection of all rational functions P/Q where P and Q are polynomials of degree no greater than m and n, respectively. For $0 < \epsilon \leq \delta$, let $R_{\epsilon} \in \mathscr{R}$ satisfy

$$\|f - R_{\epsilon}\|_{[0,\epsilon]} = \min_{g \in \mathscr{R}} \|f - g\|_{[0,\epsilon]}, \qquad (3)$$

where $\| \|_{[0,\epsilon]}$ is the supremum norm over the interval $[0, \epsilon]$. We will establish the following theorem using the elements of the theory of best approximation.

THEOREM 1. Let $R_{m,n}$ be the [m/n] Padé approximant of f. For each ϵ , $0 < \epsilon \leq \delta$, let $R_{\epsilon} \in \mathcal{R}$ satisfy (3). Then there is a real neighborhood Ω of 0 such that $R_{\epsilon} \rightarrow R_{m,n}$ uniformly on Ω , as $\epsilon \downarrow 0$.

To prove this theorem, we need the following standard results in approximation theory. See, for instance, Cheney [1, p. 163], and Lorentz [2, p. 40]. LEMMA 2. In order that an irreducible rational function $R_{\epsilon} = P_{\epsilon}/Q_{\epsilon}$ be the best approximation to f from \mathscr{R} on $[0, \epsilon]$, it is necessary and sufficient that the error $f - R_{\epsilon}$ will have at least $2 + \max\{m + \deg Q_{\epsilon}, n + \deg P_{\epsilon}\}$ alternations.

LEMMA 3. (Markov). Let p_N be a polynomial of degree no greater than $N(\geq 0)$ such that $|p_N(x)| \leq M$ for all x on $[0, \epsilon]$, $\epsilon > 0$. Then $|p_N'(x)| \leq 2N^2 M/\epsilon$ for all x on $[0, \epsilon]$

We now begin to prove Theorem 1. Write R_{ϵ} in an irreducible form $R_{\epsilon} = P_{\epsilon}/Q_{\epsilon}$, where $P_{\epsilon}(x) = \sum_{j=0}^{m} b_{\epsilon,j} x^{j}$, $Q_{\epsilon}(x) = \sum_{j=0}^{n} c_{\epsilon,j} x^{j}$, and $\sum_{j=0}^{n} |c_{\epsilon,j}| = 1$. Let $\nu(\epsilon) = \max\{m + \deg Q_{\epsilon}, n + \deg P_{\epsilon}\}$. By Lemma 2, $f - R_{\epsilon}$ has at least $\nu(\epsilon) + 1$ (distinct) zeros in $(0, \epsilon)$. Let $\tilde{P}_{\epsilon}(x) = P_{\epsilon}(x) x^{m+n-\nu(\epsilon)}$, and $\tilde{Q}_{\epsilon}(x) = Q_{\epsilon}(x) x^{m+n-\nu(\epsilon)}$. Then counting multiplicities, $f\tilde{Q}_{\epsilon} - \tilde{P}_{\epsilon}$ has at least m + n + 1 zeros in $[0, \epsilon]$. By Rolle's Theorem we have

$$(f\tilde{Q}_{\epsilon}-\tilde{P}_{\epsilon})^{(j)}(\xi_{\epsilon,j})=0, \qquad j=0,...,m+n, \tag{4}$$

where $\xi_{\epsilon,0},...,\xi_{\epsilon,m+n}$ lie in $[0, \epsilon]$. Furthermore, it is easy to see that deg $\tilde{P}_{\epsilon} \leq m$ and deg $\tilde{Q}_{\epsilon} \leq n$. By the normalization of Q_{ϵ} , we have $|c_{\epsilon,j}| \leq 1$, so that there is a sequence $\epsilon_k \downarrow 0$ such that for all $k, m + n - \nu(\epsilon_k) = l$, a nonnegative integer, and $c_{\epsilon_k,j}$ converges to some c_j for j = 0,...,n. (Observe that ϵ_k can be chosen as a subsequence of any given sequence of positive numbers converging to 0.) Define $Q(x) = \sum_{j=0}^{n} c_j x^j$, and $\tilde{Q}(x) = x^l Q(x)$. Clearly, deg $\tilde{Q} \leq n$, and it is obvious that $\sum |c_j| = 1$ so that $\tilde{Q} \neq 0$. Hence, since $\xi_{\epsilon_k,j} \to 0$ for j = 0,..., m + n, we have $(f \tilde{Q}_{\epsilon_k})^{(j)}(\xi_{\epsilon_k,j}) \to (f \tilde{Q})^{(j)}(0)$, $0 \leq j \leq m + n$. But since deg $\tilde{P}_{\epsilon} \leq m$, $(f \tilde{Q}_{\epsilon})^{(j)}(\xi_{\epsilon,j}) = 0$ whenever $m < j \leq m + n$, from (4). Hence, we have

$$(f\tilde{Q})^{(j)}(0) = 0, \qquad j = m+1, \dots, m+n.$$
 (5)

These are "half" of the Padé equations (2). To obtain the other "half", note that

$$\|f-R_{\epsilon}\|_{[0,\epsilon]} = \|f-P_{\epsilon}/\tilde{Q}_{\epsilon}\|_{[0,\epsilon]} \leq \|f-T_{m}\|_{[0,\epsilon]},$$

where $T_m(x) = a_0 + \cdots + a_m x^m$. Hence, it follows that

$$\| T_m \tilde{Q}_{\epsilon} - \tilde{P}_{\epsilon} \|_{[0,\epsilon]} \leq \| f \tilde{Q}_{\epsilon} - \tilde{P}_{\epsilon} \|_{[0,\epsilon]} + \| (f - T_m) \tilde{Q}_{\epsilon} \|_{[0,\epsilon]}$$

$$\leq \| f - R_{\epsilon} \|_{[0,\epsilon]} \| \tilde{Q}_{\epsilon} \|_{[0,\epsilon]} + \| f - T_m \|_{[0,\epsilon]} \| \tilde{Q}_{\epsilon} \|_{[0,\epsilon]}$$

$$\leq 2 \| \tilde{Q}_{\epsilon} \|_{[0,\epsilon]} \| f - T_m \|_{[0,\epsilon]} \leq 2 \| f - T_m \|_{[0,\epsilon]} .$$

By the definition of T_m , it is clear that $||f - T_m||_{[0,\epsilon]} = 0(\epsilon^{m+1})$. Thus, by Lemma 3, we have

$$\|(T_m \tilde{Q}_{\epsilon} - \tilde{P}_{\epsilon})^{(j)}\|_{[0,\epsilon]} = 0(\epsilon^{m-j+1}), \qquad j = 0, \dots, m.$$
(6)

In particular, for j = 0, ..., m,

$$\| \tilde{P}_{\epsilon}^{(j)} \|_{[0,\epsilon]} \leq \| (T_m \tilde{Q}_{\epsilon})^{(j)} \|_{[0,\epsilon]} + 0(\epsilon^{m-j+1})$$

$$\leq \| (T_m \tilde{Q}_{\epsilon})^{(j)} \|_{[0,1]} + 0(\epsilon^{m-j+1}) = 0(1).$$
 (7)

In (7), if we put j = m, j = m - 1,..., and j = 0, consecutively, we see that the sequences $\{b_{\epsilon_k,j}\}, j = 0,..., m$, are bounded and hence have convergent subsequences $\{b_{\epsilon_k',j}\}$. Let $b_j = \lim b_{\epsilon_k',j}$, $P(x) = \sum_{j=0}^m b_j x^j$, and $\tilde{P}(x) = x^l P(x)$. Clearly, deg $\tilde{P} \leq m$. From (4) we conclude that

$$(f\tilde{Q} - \tilde{P})^{(j)}(0) = 0, \quad j = 0, ..., m.$$
 (8)

These are the other "half" of the Padé equations (2). Combining (5) and (8), we have

$$(f\tilde{Q}-\tilde{P})^{(j)}(0)=0, \quad j=0,...,m+n.$$

By Lemma 1 we know that $R_{m,n} = \tilde{P}/\tilde{Q}$ is the [m/n] Padé approximant of f. It follows from the uniqueness property of the Padé approximant that as $k \to \infty$, $R_{\epsilon_k} \to R_{m,n}$, coefficientwise. Hence, $R_{\epsilon} \to R_{m,n}$ coefficientwise, as $\epsilon \downarrow 0$. Taking Ω to be any open interval $(-\eta, \eta)$ for which $[-\eta, \eta]$ contains no pole of $R_{m,n}$, it follows that $R_{\epsilon} \to R_{m,n}$ uniformly on Ω , as $\epsilon \downarrow 0$.

References

- 1. E. W. CHENEY, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.
- 2. G. G. LORENTZ, "Approximation of Functions," Holt, New York, 1966.
- 3. H. W. WALL, "Analytic Theory of Continued Fractions," Van Nostrand, Princeton, NJ, 1948.
- 4. J. L. WALSH, On approximation to an analytic function by rational functions of best approximation, *Math. Z.* 38 (1934), 163–176.
- J. L. WALSH, Padé approximants as limits of rational functions of best approximation, J. Math. Mech. 13 (1964), 305-312.
- 6. J. L. WALSH, Padé approximants as limits of rational functions of best approximation, real domain, J. Approximation Theory 11 (1974), 225-230.

204